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Superspace-group approach to the modulated structure 
of the inorganic misfit layer compound (LaS),,,,NbS, 
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Laboratory of Inorganic Chemistry, Materials Science Centre, University of Groningen, 
Nijenborgh 16,9147 AG Groningen. The Netherlands 

Received 20 September 1990 

Abstract. The structure of the inorganic misfit layer compound (LaS), ,,NbS2 is reanalysed 
in the supenpace-group formalism. using the recent single-crystal x-ray diffraction data 
obtained by Meenchaut, Rabu and Rouxel. Structure refinements make it passible to 
determine the d u e s  of the modulation functions of the various atoms. The largest modu- 
lationamplitudesare fooundon theLaatomsandon thesulphuratomsoftheNbS2subsystem. 
They mainly describe displacements i n  the plane of the layers. A detailed analysis is given 
of the coordination of various atoms by plotting interatomic distances as a function of the 
incommensurate phase parameter. 

1. Introduction 

Inorganic misfit layer compounds are one example of the so-called intergrowth struc- 
tures. This type of crystal is characterized by the presence of two or more, mutually 
incommensurate, three-dimensional (3D) lattices. The structure is described by a finite 
fraction of the atoms being arranged periodically according to one lattice, while the 
remaining fraction has the periodicity of the second lattice. 

The structures of the misfit layer compounds are characterized by an alternate 
stacking of layers MS2 (with M = Nb, Ta, etc) and layersTS (with T = Sn, La, etc) [l, 21. 
For (LaS)I,14NbS2 the NbS2 subsystem forms an F-centred orthorhombic lattice, with 
thecaxispe endiculartothelayers, andwith latticeparametersgivenbya,, = 3.310 A, 

a2: = la,,, q2 = aI2 and an a axis parallel to all, but with incommensurate length ratio: 
a2, = 5.828 8, (figures 1 and 2) [3,4]. In thiscompoundthe intergrowthcharacter is thus 
defined by the mutually incommensuraten axes of the two subsystems. 

(LaS)l,,4NbS2 has been synthesized by Meerschaut er a l [ 3 ] ,  who also performed a 
single-crystal x-ray diffraction measurement. Their structure determination was done 
usingthesame, largeunitcellforbothsubsystems, defined bya, = 4azI = 7a,,. However, 
they used the incorrect space group Bbcb (note: the alternative setting used by Meer- 
schaut er al has space group Ccca). Subsequently, it was shown [4] that the proper 
supercellspacegroupisacentric: Bb2b. Recently, Meerschaut eral[S] havereinterpreted 
their data, giving new refinement results in the supercell description, using space group 
Bb2b. 
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a,, = 5.793 x and a,: = 23.043 A. The LaS subsystem is C-centred orthorhombic, with 

1247 



1248 S van Smaalen 

c t  

Flgure 1. Projection of rhe structure of LaS, #,NbS2 along the b axis. Large open circles 
denote S atoms. smallopencirclesdenote Nb atoms, and hatchedcircles represent L a  atoms. 
Only half the unil cell alongb is shown. The shorlest distances between the two subsystems 
are indicated by broken lines. 

L O  --? 
Figure 2. Projection of the strumre along the c axis. showing the plane of contact between 
La atoms and S of the NbS2 subsystem. Large open circles denole S atoms. small circles 
denole Nb atoms, and hatched circles represent L a  atoms. Only one-quarter of the unit cel l  
along e is given. Sulphur atoms of the second subsystem (LaS) are omitted for clarity. 

One question to be answered for (LaS)I ,,NbS2 is whether the true a-axes ratio is 
incommensurate or equal IO 4/7. The lattice parameters determined for the individual 
subsystem lattices indicate that 4/7 is too crude an approximation [4]. Therefore, the 
supercell approach can only lead to an approximate description of the real structure. A 
more important drawback of the supercell approach is that it cannot fully employ the 
symmetry present in the system. This is expressed by the need to specify and refine a 
large number of structural parameters in that approach [3,5]. 

This problem is resolved by the composite structure approach, as given by Wiegers 
eta1 [4] for (LaS), ,,NbS2. Each subsystem is then described by afew independent atoms 
with coordinates with respect to the subsystem's own unit cell (compare figures 1 and 
2). The advantage of this approach is that it makes an analysis of the building properties 
easier. Adisadvantage is that the symmetry isstill not being used completely. A problem 
that becomes even more important is when not only the basicstructure (translationally 
symmetric subsystems) is analysed, but also the modulation (modulated subsystems) is 
taken into account. The superspace-group approach then becomes unavoidable. 

The superspace-group description of the orthorhombic misfit layer compound 
(SnS)1,17NbS2 has been given previously [6]. The first result, which is of more philo- 
sophical importance, is that the superspace-group approach shows that intergrowth 
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compounds indeed have space-group symmetry. For the basic structure, its principal 
result was to define a relation between the space groups of the individual subsystems. 
This allowed for the determination of the proper acentric space group for the SnS 
subsystem [6].  Subsequently. this principle was applied to other misfit compounds, 
among which was (LaS)I.14NbS2 [I ,  4,7]. The symmetry restrictions for the modulation 
functions were also given, but values for the remaining independent parameters were 
not determined. Recently, refinements of the modulated structure of LaCrS, and 
(PbS),,,,VS2 were published by Kat0 and coworkers [8,9]. 

In this paper we will give the complete superspace-group description for 
(LaS),,,,NbS2, including a determination of the modulation parameters. Refinements 
were performed with the computer program COMPREF [lo] and using the x-ray data by 
Meerschaut et al[3]. In the second half of the paper the coordination of the various 
atoms is studied, both with respect to atoms in the same subsystem and %<th respect to 
the atoms of the other subsystem. 

2. Superspace-group symmetry 

The superspace-group analysis of intergrowth crystals has been given by Janner and 
Janssen [ll] and was further developed by van Smaalen [U].  The starting point of this 
approach is the description of the diffraction pattern with a finite set of integral indices. 
For (LaS),.,,NbS2 it was shown previously that four reciprocal vectors are sufficient [4]. 
This set, M = {a: ,  , . _ .a ; } ,  can be defined as a: = aTl, at = a t , a J  = a &  and a: = 

The a:, (U = 1,2;  i = 1,2,3)  are the reciprocal lattice vectors of the subsystem unit 
cells as defined in the introduction, with U = 1 describing the NbS2 subsystem. Now, the 
basis vectors of the subsystem reciprocal lattice, A:, can be written as an integral linear 
combination of the basis vectors in M [ll]: 

4 

a;; = c z;ak* 
k =  I 

Because a?, and atl are parallel, the matrix defining the components of the fourth 
reciprocal vector in M with respect to the first three is given by 

U = (a ,  0.0) (2) 

with a = all/az~ = 0.568. 
Owing to the interaction between the subsystems, each one will be modulated, with 

a modulation wavevector given by the periodicities of the reciprocal lattice of the other 
subsystem. This means that the modulation wavevectors are given by the vectors in M 
thatareabsentinA:.So,the3 X (3 + l)matrixZcanbeextendedtoa(3 + 1) X (3 + 1) 
matrix W by juxtaposition with an integer matrix V [12]: 

W” - (;;). (3) 

Requirementsfor P a r e  that: (i) W”isnon-singularand(ii) the entirediffraction pattern 
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can be described. V” defines the modulation wavevector in subsystem U in terms of the 
vectors present in M: 

4 

q” = 2 vy*uR*. (4) 
k =  I 

It is not dificult to show that any main reflection or satellite of subsystem v with indices 
(A,,, k,. I,, m.) with respect to A: and the vector q” has integer indices with respect to 
M given by 

( H . K . L . i M )  = ( h ~ , k v , i ~ , m v ) W ’ ” .  ( 5 )  

Previously, we have given the matrix 

‘ 0  0 0  1 

Z ? =  l O O 2 J  0 1 0 0 (6) 

fortheLaSsubsystem(v = ?).Thiswouldleadto the V’matrix(1,O. l,O).Tofacilitate 
the analysis we will now use the matrices 

b o o 1 1  1 1  0 0 OJ 

for the NbS,subsystem(v = 1) and the LaSsubsystem (v = 2), respectively. Thismeans 
that we will use a2; = U , ; ,  instead of = !al, as defined in the introduction, together 
with a new centring translation for the second subsystem. 

Superspace is obtained in the usual way, by identification of the four basis vectors of 
Mwith theperpendicular projectionoffour independent translationvectorsina (3 + 1)- 
dimensional space [ I l ,  131. With e and e* a pair of mutually reciprocal vectors, per- 
pendicular to physical space, the superspace lattice basis Z and its reciprocal Z* are 
defined as 

(a:, = (a: e*). 

From the relation between the subsystem unit cells and the supercell it follows that 
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the relation between the four-integer indexing and the supercell indexing (hs, k,, Is) by 
Meerschaut er al[3]  is given by [4] 

h, = 7 H  + 4M 
k, = K (9) 
1, = L. 

Obviously, for given (hs, k,, is), equation (9) has infinitely many solutions. Except for a 
very few, these solutions have high values for both Iff and IMI. Such indices describe 
higher-order satellites in each subsystem, and thus will have negligible intensity. There 
isalwaysonesolution that haseither IHIoriMI lessthanlH]andIM[ofallothersolutions 
(note: H may be equal to either Mor  - M ) .  This set of indices is used as the reflection 
indices in the analysis in this paper. For most reflections, the next solution is a satellite 
ofat least twoordershigher,anditisindeedagoodapproximation toneglectitsintensity. 
Only for a few reflections is the next solution but one reflection order higher. For 
example, the ( 4 ,  K ,  L ,  - 1 )  and the (0, K ,  L ,  6 )  reflections coincide. In these instances 
the error made by neglecting this reflection will be somewhat larger. Unfortunately, 
computational difficulties prevented us from correcting for this effect. 

After extraction of the four-integer indexing from the supetcell indexing, 860 reflec- 
t iomwithi> 2.5o(I)wereobtained. Thissetdividedinto584mainreflections,226first- 
order satellites and 50 second-order satellites. Analysis of missing reflections showed 
that the extinction conditions H + K + M = odd, H + L = odd and K + L + M = odd 
are absent for the general (H, K ,  L ,  M )  reflections; and H + K = odd and M = odd are 
absent for the (H, K, 0, M) reflections. Only five reflections violating these conditions 
were found with intensity just above the 2.5o(I) threshold. The former three conditions 
point towards F-centring, with centring translations 

(i, 0 , k  0) (104  

(4, $, 0, 1) ( lob)  

(0.1.4, t). (104 
The latter two conditions correspond to a mirror plane perpendicular to the c axis, with 
a translation of either &a4 or $a, t &a> Both glide planes are present in the superspace 
group. 

The extinctions found are compatible with the centrosymmetric superspace group 
P:Fmmm:ils(@, 0,O). As described earlier, only the acentric superspace group 
P:Fm;?m:'iis(a, 0,O) is compatible with the basic structure [4]. In this paper we wiU 
show that this superspace group also describes the modulation correctly. . I  - .  
3. Embedding in superspace 

There are two alternative approaches to the superspace-group analysis of intergrowth 
compounds. The first is where the structure is described through its coordinates with . 
respect to the superspace basis. After computations (structure factor, distances) a 3D 
picture can be obtained by taking the appropriate section of superspace. This approach 
was adopted in earlier publications [6,12]. The disadvantage of this description is that 
it obscures the component character of the structure. In the second approach, adopted 
in this paper, each subsystem is described as a modulated structure with respect to its 



1252 S van Smaalen 

own subsystem basis. The symmetry is still given by the superspace group. The problem 
to be solved then is to derive the effect of the superspace-group operators on the 
coordinates with respect to the subsystem lattices, and to obtain the phase relation 
bctween the various subsystems. In this paper we will give the resulting equations of 
that analysis, which are of interest for (LaS),,,,NbS,. The general derivation will be 
given elsewhere [14]. 

First, we give some definitions that are needed in the remainder of the paper. The 
embedding of physical space i n  superspace is defined by equations (1). (Z), (31, (7) and 
(8). Analogously, for each subsystem, a different embedding in superspace can be 
defined. using the vectors of AT (equation (1)) together with the vector q” (equation 
(4)), It is easy to derive that the subsystem sigma matrix (the components of q”)  is given 
by [I21 

U $ ,  = (v; -k v$u)(z; + Z;o)-l (11) 
where the matrix Z” is written as the juxtaposition of a 3 X 3 matrix Z; and a 3 x d 
matrix Z;. Analogously, V’ = ( V i .  V;) .  This embedding can be considered as the 
standard embedding of a modulated structure in superspace. It is different for each 
subsystem, and will becalled the subsystemsuperspace embedding. It can beshown that 
M’” (equation (7)) is precisely the coordinate transformation in superspace between 2 
(equation (8)) and the subsystem superspace embedding ZW9 thus defining the latter: 

A point in superspace (Es) is given by the position vector 

or equivalently by 

Then physical space (E3) is a subspace of E’. given by the coltection of points 
((0, e*) .rr) = 0. Equivalent descriptions of physical space, E3(r), are obtained as the 
collection of points given by ((0, e*)  ’r , )  = 1. Because X and X,, have different basis 
Yectors. selecting a single section E3(f) will correspond to different values for f when 
using either equation (130) or (13b). These values are denoted by f and r,. respectively. 

The relation between the two subsystems is given by the relation between f and the 
two parameters fu. Furthermore. the basic structure coordinates of each subsystem may 
depend on f, owing to a I-dependent shift of the origin. The derivation of these relations 
for the general case of a ( 3  + d)-dimensional superspace and an arbitrary number of 
subsystems will be given elsewhere [14]. Here we give the results for (LaS),,,4NbS2. 

The coordinates of the atoms in subsystem Y with respect to the subsystem lattice 
basis A,, are (i = 1,2,3)  

x , ,  = n,,i + x t ( j )  + u?,(x;*) (14) 
where n,,i runs over all integers, defining the periodicity of the subsystem; xU,,( j )  is the 
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basic structure position within one unit cell; the optional argumentj denotes a particular 
atom in the unit cell; and u?~(x;,~) is the periodic modulation function for that atom. 
The argument of the modulation function is the fourth coordinate of the subsystem 
superspace embedding defined by 

nul + x %  0 “ ” 5  + x!L 

x O , , ~  = U“ . n1,2 + x t 2  + t , .  (15) 

The first three coordinates of the subsystem superspace description are obtained trivially 
asxusi = xUi. The fourth coordinate is obtained as the sum of x:,, and the inner product 
of U,, and U ~ ; ( X ~ ~ ~ ) ,  Note that the (3 + 1)-dimensional equivalent of a point atom in 
physical! space is thus obtained as the I D  point set defined by f, assuming all real values, 
which is on average parallel to (equation (15)). 

Now, consider the complete structure to be described in  superspace with respect to 
E. Then, the basic structure coordinates of subsystem v ,  with respect to A,, are given 
by P4I 

. f U i  = nUi  + x”,,G) - (Z j t ) , .  (16) 
The r-dependent part reflects a shift of the origin with respect to the one obtained with 
the standard superspace description. The atomic positions in the modulated structure 
are the sum off,, and the modulation function. 

x,i = .t”i + (17) 

X”r4 = U” ’ f” f \ y r .  

f, = (V: - u,Z;)r. 

where X,, is the fourth superspace coordinate for the basic structure (equation (13b)) 

(18) 
given by 

From equations (14) to (18) the relation between f and the f, is obtained as [14]: 

(19) 
Furthermore, it is found that the section E’(/) may change the origin in subsystem v by 
Zit.  

The I D  point set comprising the atom in superspace is now obtained as 

. .  
where the supersIjace coordinates refer to X, The corresponding basicstructure position 
is 1) XS? = Y “  t)+[) .f“3 .i7”2 

(21) 

xs4 

wherei:,, andfvs4are defined by equations (16) and (18). Y” is the pseudo-inverse of 2”. 
suitable for the embedding defined by equations (1) and (2) [6, 121: 
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i. (2; + Z;u)-‘ 

.O(Z;’ + Z;u)-’.  i y“ = 

4. Symmetry restrictions 

The elements of the superspace group are generally given as their matrix representation 
with respect to the superspace lattice basis 2. The effect of the symmetry operators 
is then obtained by application of these matrix representations on the coordinates, 
equations (20) and (21), in the usual way.The problem is that in that case the coordinate 

must be written as a function of the coordinates ,fS1, . . . . fs4. 
As discussed in the previous section, we will work with the coordinates of the atoms 

with respect to the subsystem superspace lattice basis E”, and the subsystem lattice A, 
(cquations(l4) and(l5)). Tobeable toevaluate theeffectofthesymmetryoperatorson 
these coordinates. their matrix representation is needed with respect to both subsystem 
superspace lattices I:,,. With W” the coordinate transformation between I: and E,, the 
subsystem superspace group operators are (R: IT;), with [14] 

R; = fi”’R5(\VL’)-’ (=a) 

7 :  = W’T,. (236) 
The effect on the coordinates (equations (14) and (15)) is then obtained in the usual way 
[13]. Application of equation (23) leads to the subsystem superspace group 
GI = PFm2m: 1 Is(&. 0.0) for the first subsystem [ 121. For the second subsystem a unit 
cell is obtained with a halved c axis and with G: = P: Cm2a:Z l (e - ’ ,  0.1). 

Assume here that U has no symmetry-determined commensurate components, a 
situation that can always be accomplished by a suitable transformation of the basic 
structure unit cells. Then the 4 X 4 matrix R,” is the direct sun1 of a 3D part Rj and a I D  
part R j .  and the effect on the coordinates is 

The term (R;Z; - Z ; ) f  reflects the effect of the origin shift Zbron the translational part 
ofthesymmetryoperator, when the latterisappliedto thecoordinatesgiveninequations 
(16) and (17). 

Symmetry restrictions on the basic structure coordinates and the modulation func- 
tions can be obtained when the symmetry operator maps the point set representing one 
atom onto itself 

Note that f and f‘ need not be the same. It can be derived that for the symmetry operator 
( R S / 7 J  the change in f value is [13,14] 
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Substitution of equation (17) into (25) and use of equation (24) gives for the basic 
structure coordinates, 

(27) 

Restrictions on the modulation functions can:be obtained from 

(28) 

ForNbS2(v = 1) previousstructurerefinements have shown thatNbison a (O,y, 0) 
and S on a (0, y ,  z)  special position of the basic structure [4]. For the LaS ( v  = 2) 
subsystem. the same paper gives special positions (4. y. z )  for both atoms La and S. 
Presently, we employ a setting with the position of the origin defined by the operator 
(2Yi[rI. 0, r3, r4). with r ,  = TA = 0 and ~4 = - t .  Then, the corresponding special 
positions of the basic structure coordinates can be obtained by application of equation 
(27) with the appropriate symmetry operators. The special position for Nb is (0, f12. 0). 
For S (U = 1). (0. .f12, fI3) is obtained. For the second subsystem, both La and S have 
the same special position, defined by (O,X,. i23). 

The modulation functions are written as a Fourier series: 
x 

U;,(?”&) = C A ! , ~  ~in(2nnx,,~) + B ; , ~  cos(2nni,,,) (29) 
, r = i  

fori = Nbl, S1, La1 and S2, respectively. fus4 isgiven byequation (18), which results in 
different expressions for the two subsystems: 

f l , 4 = 4 n l l  + x l t O ’ ) ) + f  (300) 

F > & = a - ‘ ( n 2 [  +xz,O’ )  - f ) .  (30b) 

Non-zerox;, can be obtained for atomsshifted by acentring translation. The restrictions 
on the Fourier components are obtained from equation (2S), and are given in table 1. 
They apply to the atoms with basic structure coordinates as given in table 2. 

5. Structure refinement 

Coordinates for the basic structure were obtained by transformation of the coordinates 
given by Wiegers et a[ [4]. Refinements of these coordinates were performed on the set 
of main reflections, i.e. on (H, K ,  L, 0) and (0, K, L. M). The coordinates for the final 
model differ less than their standard deviation from the values obtained in [4]. Also they 



1256 S van Smaalen 

Table 1. Symmetry restrictions on the modulation functions (equation (29)) of the four 
independent atoms. Note that thecoordinates are relative toAV for each subsystem Y = 1. 
2. The parameters i,,* ( v  = 1. 2) are defined in equation (30). For each atom it is given 
whether the function irodd, even or zero, 

Atom Coordinate Odd harmonia Even harmonics 

Nbl (U = 1) U,, zero odd 
U,: zero even 
Uli even 7.WO 

SI ( v =  I )  U,, odd odd 
U,? even even 
U13 even even 

L a l ( u = 2 )  U?, odd odd 
02 even even 
ILL> even e w n  

s2 ( v  = 2) [ I : ,  odd odd 
U’. even even 
U 3  even even 

Table 2. Basic structure coordinates of the independent atoms. For each atom. the COOT. 

dinatesarerelative toitsownsubsystem uni tce l l  and refer to thestandardsubsystemorigin. 
For the second subsystem they refer to og = 23.043 A.  The position of the origin was fixed 
bychoosingr’,, = Ofor Lal. The tdependcnce of the positionof theorigin can be obtained 
from equation (16). The superspace positions then follow from equation (21). The values 
given correspond to the result of the refincmenr of the modulated structure. and differ 
only marginally from the values obtained for refining only the basic structure coordinates 
themselves. Standard deviations in the last digits are given in parentheses. 

Atom x:,  X L  X:!l 

N b l ( v =  I )  0 -0.075 l(6) 0 
SI ( ”  = I )  0 0.2583(8) 0.0678(2) 
L d l  (1’ = 2) 0 O.O(*) 0.32633(5) 
S ? ( 0 = 2 )  0 0.5US6(22) 0.3003(2) 

are equal within standard deviations to the basic structure coordinates as obtained from 
the refinement including the modulation; the latter are given in table 2. The R-factors 
are given in table 3.  

To determine the modulation, the first harmonics for La1 (three parameters) were 
allowed to vary in a refinement against the main reflections and the first-order satellites. 
This resulted in an improvement of the RI-? value for the main reflections from 0.092 to 
0.082. The partial R-factor obtained for the first-order satellites was 0.23. Subsequently, 
first and second harmonics of the modulation functions for all four independent atoms 
were added, which arc compatible with the symmetry restrictions as given in table 1. 
Refinement against the complete data set (satellites up to second order) gave a smooth 
convergence to the final structure model, as is summarized in tablc 2 (basic structure 
coordinates). table 4 (modulation function amplitudes) and table 5 (temperature par- 
ameters). The R-factors for the final structure model are given in table 3. 
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Table 3. Crvstalloeraphic R-factors for the final fits, for various reflection subsets. The NbS 

Basic structure Modulated structure 
Reflection 
subset RF R,. RF R+ 

~ ~ ~ ~ ~ 

All 0.064 0.077 
Main 0.071 0.092 0.057 0.075 
NbS2 part 0.097 0.120 0.064 0.074 
LaS part 0.051 0.054 0.046 0.049 
Common main 0.075 0.102 0.074 0.102 
First-order satellites 0.112 0.132 
Second-order satellites 0 . m  0.179 

Table 4. Values of the modulation parameters for the independent atoms given in table 2. 
The parameterSA,,, and B,,, are the Fourier amplitudes as defined in equation (29). For each 
atom, the coordinates are relative to its own subsystem unit cell. For the second subsystem 
they refer to a3 = 23.043 A.  Standard deviations i n  the last digits are given in parentheses. 

N b l ( v =  I) 0 0 -0.0006(2) -0.0078(17) -0.0014(7) 0 
SI ( o  = I) 0.0134(85) -0.0022(12) 0.0014(14) 0.0129(27) -0.0073(27) -0,W12(3) 
La1 ( v  = 2) O.OOlO(22) 0.0171(4) -0.0005(3) -0.0144(7) O.OWl(14) 0.0008(3) 
S2 (U = 2) -0.0059(70) 0.0081(16) 0.0009(12) O.W30(30) -0.0002(56) 0.0007( 10) 

Table 5. Values of the temperature parameters for the independent atoms given in table 2. 
The temperature factor as occurs in the expression for the structure factor is defined as 

r=exp[ - (P , ,H2  + P E P  + P n L ' + 2 p , 1 H L ) ] .  

P , :  and P,? are zero because of the symmetry. For each atom. the parameters refer to its 
own subsystem unit cell. For the second subsystem they refer to a= = 23.043 A. Standard 
deviations in the last digits are given in parentheses. 

Atom PI1 P'2 Pn P!, 
Nbl (U = 1) 0.0305(13) 0.0009(3) 0.00035(2) 0 
SI (U = 1) 0.0302(41) O.OOU(S) 0.00010(6) O.OOOl(2) 
La1 ( v  =2)  0.0211(4) 0.0082(3) 0.00063(2) 0.0004(1) 
S 2 ( v  = 2) 0.0173(17) 0.0073(13) 0.00060(7) 0.0011(6) 

The R-factor values for the best structure model (table 3) show that a reasonably 
good fit is obtained. The higher values of the R-factor for the first-order and second- 
order satellites can be explained in part by the fact that these reflections are on average 
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much weaker than the main reflections. Especially, most of the second-order satellites 
are just above the 2.50(0 threshold of observability. 

6. Discussion 

The parameters describing the basic structure as obtained here compare well with the 
results given by Wiegers er d[4] and given by Meerschaut et a l [ 5 ] .  Compared with the 
basic structure refinement presented here, Wiegers er a/ [4] obtained lower R-factors. 
This can be explained by the fact that in the latter set of refinements three independent 
scale factors werc used, for the NbS part, LaS part and the common main reflections, 
respectively. 

An analysis of the structure can be made by considering interatomic distances as a 
functionofthephysica1spacesection;that is,asafunctionofthecoordinates,r,, . . .,f,,, 
along the additional axes. For (L.aS)I,14NbS2 there is only one variable I. 

Withd = 1,andthe U’”matricesgiveninequation(7), thebasicstructurecoordinates 
for (LaS),,,,NbS2 follow from equation (16): 

. c l j  = n t i  + &(j) i =  1 . 2 , j  (310) 

22, = n2, + w & ( j )  - t (316) 

fZi  = n2; -+ xy,f.j) i = 2.3. (314 
The values for x:i are given in table 2. The arguments of the modulation functions are 
given in equation (30). Their harmonic decomposition is given in equation (29), with 
parameters from table 3. In each case these coordinates refer to the subsystem lattice 
basis A&,. To be able to calculate atomic distances between atoms belonging to different 
subsystems, their coordinates need to be transformed to a single basis. Suitable trans- 
formation matrices are 

(z; + Z;o)-’ (32) 
for U = 1 ,  2. respectively. Then, the transformed coordinates are with respect to the 
direct lattice basis belonging to the first three vectors of the set M (equation (1)). The 
effectof thesymmetryoperatorsisgiveninequation(24). Itisnoweasy touseequations 
(29) to (31) to calculate interatomic distances. 

In figure 1 aprojectionofapartof thestructureof (LaS),,,$IbS2isshown. It follows 
that the shortest distances between the two subsystems are between La atoms and 
sulphur a t o m  of the NbSZ subsystem. In figure 3, the distance between such a pair is 
shown. From equation (31) it follows that for one pair of atoms the distance increases 
indefinitely and linearly in t, when I approaches plus or minus infinity. Therefore this 
function is not periodic (one of the curves in figure 3). However, as given in figure 3, the 
distances can be considered between one La atom and all sulphur atoms translationally 
equivalent along the incommensurate a axis (rill in equation (31) assumes all integer 
values). The resulting plot (figure 3) is periodic, with the periodicity of the LaS sub- 
system. From equation (30) as well as figure 3 it follows that the periodicity in f is given 
by a = 0.57 (equation (2)). This means that figure 3 together with a plot of the LaS 
distances within subsystem 2 can be used to study the La coordination as a function off. 

The true La coordination is obtained when distances are considered from La to all 
possible sulphur atoms. From figurezit follows that sulphur atoms of the first subsystem 
in the planes at y = +0.25 are a possible candidate. Figure 4 gives the basic structure 
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Figure 3. Basic structure distance between La1 
(U = 2) and S1 (U = 1) as a function of the p h a e  
parameter1,Thedistdnceisbetween (m: 110.5.0, 
0.5. 0.5) La1 and (E  Iln, , .  0. 0, 0) SI,  with the 
coordinates taken from table 2. Each curve cor- 
respondstoadiiierentintege~valueiorn,,,i.e. 10 
a different but translationally equivalent sulphur 
atom. Note that the symmetry operators reier to 
the srandard superrpace basis. 
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Figure4.CoordinationoiLal(v=2)bySl(v= 
1) as a function of the phase parameter t, in the 
basic structure. The c w e s  with a minimum 
marked A ,  correspond lo the distance between 
(m, 110.5,0,0.5,0.5)Lal and (E llnll.O,O,O)Sl, 
but with different ni, .  The curve with a minimum 
marked A2 correspond to the distance between 
(m, 110.5.0,0.5,0.5) La1 and ( E  110.5, -0.5.0, 
0.5)Sl. Valuesofthedistancesattheminimaand 
cross-over points are d(A,) = 2.86 A, d(AJ = 
2.81 A. d(B) = 2.96A. d(C,) = 3.30A and 
d(C2) = 3.26A. 

distances of La to sulphur of the NbS2 subsystemt, Again, the periodicity of (Y = 0.57 in 
tisobserved. The minimum distance (2.81 A) is smaller than the average La-S distances 
within the LaS subsystem, showing the strong bonding between the layers in this misfit 
compound, as compared to  the van der Waals gap in NbSz. The minimum distance 
between La and any sulphur atom of the first subsystem is obtained by following a curve 
from a point A to a point B, and then switching to the other curve with a minimum 
distance. Noteworthy is that the variation in the shortest distance is only0.15 A, avalue 
that is of the same order as is found for the modulation in modulated compounds. 
These two effects might be an explanation for the relative stability of the misfit layer 
compounds. Further analysisof figure4showsthat thecoordinationofLavaries between 
5 + 1 and 5 + 2, rather than 5 + 3. 

Alternatively, the coordination of sulphur of the first subsystem can be studied by 
allowing nZ1 to assume all integer values for La atoms in both the y = 0 and y = 0.5 
layers. The distances as a function off between S1 and all possible La atoms are given 
in figure 5. It follows that the resulting function is periodic with periodicity 1.0 in t. As 
viewed from thesulphur atoms, thevariationintheinteratomicdistance withLaislarger 
than the other way around: 0.37A instead of 0.15 A. This is easily understood from 
figures1 andZ,whereitisseenthatthereisasulphutatomeverya,, = 3.310& whereas 
the La atoms are interspaced by azI = 5.828 A. Sulphur atoms of the first subsystem are 
coordinated by three Nb atoms and between one and two La atoms. 

t For (PbS),,12VS,, a plol similar to figure 4 was given in [9]. However, the effect of the modulation is not 
included there. 
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Figure5.CoordinationofSl(v = I ) b y L a l ( v =  
2) as a function of the phase parameter I in basic 
Structure. Thecurverwith aminimum marked A ,  
correspond lo the distance between ( E  I IO. 0.0. 
0) SI and (m: 1/0.5,0.0.5. n?, t 0.5) La l .  The 
curves marked A. define the distance between 
(€  1l0,0,0,0) SI and(mi ll0.0.5.0.S.n~,) La1 
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Flyre6. CoordinationofLa1 ( v  = 2) by SI (1, = 
I )  asgiven in figure4. but now including the modu- 
lation. Dislances at the minima and cross-over 
points are d(A, )  = 2.93 8,. d(AI) = 2.87 A, 
d(B) = 2.99A. d(C, )  = 3.21 8, and d(CJ = 
3.188,. 

Atomic distances in the modulated structure can be obtained as a function of the 
phase parametert. when the modulationfunctionsarealsotakenintoaaount (equations 
(29) and (30) and table 3). For the La coordination. a plot similar to figure 4 is given in 
figure6. Comparisonofthesefiguresshowsthat theeffectofthemodulationistoincrease 
the shortest distance. Howmever. the range of the shortest distance is decreased, from 
0.15 a for the basic structure to 0.12 A for the modulated structure. This flattening of 
the shortest La to SI distance seems to be the driving force for the modulation. From 
figure 4 or figure 6, it is then easily understood that an important part of the modulation 
function must be a second harmonic on La (table 1). Only then can an increase of the 
distances at both A, and A, can be obtained. 

Because La coordination with the sulphur atoms of the first subsystem has the 
periodicity of the LaS subsystem, thecorrelation betw,een the distdncesas given in figure 
6and the distances within the secondsubsystem can be analysed.Thedistances between 
La and the five closest S atoms in its own subsystem are given in figure 7. First, it is 
observed that the variation in distance from La to S2 at positions ?Sa and along e has a 
pseudo-period that is twice that of the variation in the distance to S2 at ktb.  This is 
explained by the fact that the principal components of the modulation on La comprise 
a first harmonic along b and a second harmonic alonga (table 4). 

Comparison of figure 6 and figure 7 shows that, fort values around the minimum A,  
(figure 6), the La to S distances within subsystem 2 all have approximately their average 
value. However, around A,therangeof distancesin figure 7ismaximal. Thus,adefinite 
eorrelationisnotobservedbetweenthedistances 1 to4andtheoccurrenceoftheminima 
in figure 6. Further analysis of figure 7 does show that, when La is linearly coordinated 
by S1 and one of the S2 (curve 5), both La to sulphur distances are increased by the 
modulation. 

Figure 8 shows the distances from S1 to La, including the effect of the modulation 
(compare withfigure5). Thecorrelationwith theS1 toniobiumdistancescan beobtained 
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F i y r e  7. Coordination of La1 ( v  = 2) by S of the 
same subsystem. Shown are the basic structure 
distances (horizontal lines) and the distances 
including the modulation. as a function of I. The 
curves correspond to the distance between 
(m: 110.5, 0, OS. 0.5) La1 and the following five 
symmerryequivalentsofS2 no. l,(m2 110, -0.5, 
0.5.0) S2;no. 2, (m: 110. -0.5.0.5, 1,0)52;no. 
3,(m, 1 ~0.5,0.0.5.0.5)S2;no. 4. (m; 110.5, -1.0, 
0.5,0.5) S2: and no. 5 ,  (E 110.5. -0.5,O. 0.5) 52. 

Figure 8. Coordination of SI (U = I )  by La1 ( v  = 3) as given in figure 5, but now including 
the effect of [he modulalion. The curves marked A,  and A! are between the same atoms as 
given in figure 5 .  Note that they are equivalent to the correspondingly marked curves in 
figure 6. 

by com arison with figure 9. One minimum in the S1 to La distance (A,) corresponds 
to mini a for all three S1 to Nb distances, whereas the other minimum in figure 8 (A2) 
corresponds to two larger and one smaller S1 to Nb distances. Again, it is found that the 
modulation, nowonS1, isdeterminedby thecorrelation with theLa toSl basicstructure 
distance rather than by what happens with the other S1 distances. This is further 
exemplified by considering the relative position of La and Nb along b.  From the infor- 
mation given in the figure captions, it follows that curve A, in figure 8 and cume 1 in 
figure 9 correspond to Nb and La.atoms at the same side of S1 (y = 0). The other curves 
correspond to metal atoms at the other side of S1 (y = 0.5). It is then seen that, for La 
withy = 0 closest to S1 ( t  = 0.50), the S1 to Nbl distances wi thy  = 0.5 are shortest. At 
1 = 0 the other La atom ( y  = 0) has a relative minimum for its distance to S1, whereas 
the distances of S1 to Nb withy = t (curves 2 and 3 in figure 9) are larger than average. 

Meerschaut era1 [5] have refined the modulated structure in the supercell approach. 
Comparison of the interatomic distances as reported in [5] and the values given here in 
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Figure 9. Coordination of S1 (U = 1) by Nh ittoms 01 thc same subsystem. Shown are lhe 
basic structure distances (horizontal lines) and the distances iiicluding the modulation. as a 
functionofl.Thecu~escorrespondtofhedislance hetucrnSI and the following Nhntoms: 
no. l.Nbl:no.2,(EI/0.5,0.5.0,0.51 Nbl;andno.3,(EI~-0.5.0.5,0.U.5lNbl. 

figures 1 to 9 show rather large differences. For the shortest inter-subsystem distance 
between La and S1, Meerschaut er a/ [5] find a range of 0.21 A, significantly larger than 
the 0.12A found here. For the next shortest distance they find a range of 0.11 A, 
smaller than found in this work. A more serious discrepancy is the completely different 
correlation between theinteratomicdistances. Here.it isfound that the shortest distance 
(2.87 A, figure 6) is accompanied by a maximum in the next shortest distance. In  [5] 
both the minimum and the maximum in the shortest distance correspond to a maximum 
in the next shortest one. One explanation could be that the atomic parameters given by 
Meerschaut ef a/ [SI show a large variation in temperature factors for different atoms in 
the supercell, which in the present approach are treated as equivalent atoms, Appar- 
ently, the model by Meerschaut era/ [SI accounts for the supercell reflections both by a 
modulation of the temperature factors and by atomic displacements, rather than using 
a pure displacive modulation, as is found in the present approach. Furthermore it  is 
noted that the R-factor for the model proposed in this paper is slightly lower than the 
one obtained by Meerschaut er al[5] .  while the present model involves fewer positional 
parameters as well as fewer temperature parameters. 

7. Conclusions 

In this paperwe report on thedeterminationofthe modulatedstructure of(LaS),,,4NbS2. 
including harmonics for the displacement modulation function up to second order. I t  is 
found that the modulation mainly affects La and the sulphur atoms of the NbS, 
subsystem. That is, the atoms responsible for the contact between the subsystems have 
the largest modulation amplitudes. The largest displacements appear to be paralIel to 
the layers, i.e. in thexy plane (table 4). 

The coordination of the La1 ( Y = 2) and S1 (v = 1) atoms was studied by considering 
interatomic distances as a function of the fourth coordinate in superspace. In particular, 
thc shortest distances from one atom to atoms of the other subsystem were calculated. 
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It was found that the variation of this distance is relatively small (figure 4), and of the 
same order as the variation in distances in ordinary modulated compounds. This gives 
a possible explanation for the relative stability of the inorganic misfit layer compounds. 
The principal effect of the modulation is found to be a decrease of the range of the 
shortest inter-subsystem distance. It was shown that the distance functions have the 
periodicityofthesubsystem to which the central atom belongs. A studyofthe correlation 
between the coordination of one atom by atoms of the other subsystem and by atoms of 
its own subsystem was made. Comparison of the results of the distance calculation for 
the basic structure and the modulated structure allowed for an analysis of the effect of 
the modulation. 
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